Compost Site Management: The Basics James McSweeney

Compost Technical Services

Managed Compost

- **The presence of oxygen** and oxygen loving organisms:
 - Fast and complete decomposition
 - Higher Temperatures needed to kill pathogens and weed seeds
 - All particles reach 131° or greater for at least 3 days
 - Achieved through effective aeration and turning
 - Minimal odors which are primarily caused by anaerobic organisms

(McSweeney, Community-Scaled Composting Systems, 2019 forthcoming)

Why Sites Close

- Odor (and odor complaints)
- Over or under capacity
- Also: economic factors, vectors, nimby-ism

Good planning, training, and <u>best management</u> <u>practices</u> can help.

Why use a recipe?

- Create conditions favorable to aerobic and thermophilic organisms
 - Pathogen and weed seed inactivation
- Retention of carbon and nitrogen/nutrients
- Odor mitigation
- Your eyes can't perform chemical analysis
- To be in compliance with State & other regulations
- <u>To have a reference point</u>

Compost BMPs: Compost Recipe

• Balance:

- Protein w/ Carbon (C:N Ratio)
- Moisture w/ dry matter (Moisture Content)
- Dense material w/ bulking agent (Bulk Density)
- Analytically developed
- Effective blending

1 Part High Nitrogen (Green)

1-2 Parts High Carbon (Brown)

1-2 Parts Neutral (Balanced C:N)

½-1 Part Bulking Agent (Porous) Compost BMPs: Temperature Treatment

ALCONT AND

- Monitoring
- Turning

0 Degrees outside!

Monitoring Pile Activity

Compost Monitoring Log										
Pile Ide	entificati	on: FW	28	Pile	Location:			er mananare note a	Date Pile Built: <u>6/22/11</u>	
Feedstocks and Mix Proportions:										
Date	Pile Temperature					Air Temp	MC	Odor	Visual	Notes (mgmt, weather, vectors):
	1	2	3	4	5					
	1'/3'	1'/3'	1'/3'	1'/3'	1'/3'					0 11 14 140
1/28	142/130	117				80.	55	NHY		(half of pile)
8/1	139/	154/130				80	70	manufe		Turned 43 8/3
8/4	154/	133/141				75	65	NHY		
8/8	150/	133/				70	65	NHY		12.11.2 ·/>
8/11	144/120	152/130				75	60	NHY		
3/18	134	142		5.4	10	77	55	dany		R.102, Y3-7/19
8/22	140/	125/				75	60	early		turnd Vs
8/25	150/138	130/	,			70	60	7.49		
8/29	117/12	12.8/12	3			70	65	musty	1 9/1	9 132/13 127/115.
91.	136/	120/	24		· 9/	128	109	129/120		Tot NH

Pathogen Reduction Mechanisms

- Thermal destruction
- Production of toxic byproducts such as gaseous ammonia
- Competition between indigenous microorganisms and pathogens
- Antagonistic relationships between organisms
- Antibiotics produced by certain fungi and actinomycetes
- natural die-off in the compost environment (which is non-ideal for enteric (gut) pathogens)
- Nutrient depletion

FIGURE 8.4. Heat inactivation of Salmonella enteritidis serotype Montivideo in composted biosolids. (Data from Ward and Brandon, 1977.)

Process to Further Reduce Pathogens (PFRP) & National Organic Program (NOP) Standards

Turned Windrows

• **PFRP standard** is to turn pile <u>at least five</u> times while maintaining ≥131 Degrees F for <u>at least 15 days</u>

Aerated Static Pile or In-Vessel

• **PFRP requirement** *is that the material reaches* 131 *Degrees F or greater for a minimum of 3 days*

Key Factors to Ensure Pathogen Inactivation

- Institutionalize BMPs
- Track batches
- Consistent temperature monitoring (1' and 3', multiple points)
- Adopt maturity standard
- Prevent reintroduction of pathogens (keep high and dry)
- Maintain aerobicity (small pile sizes)
- Periodic testing

Compost BMPs: Moisture Management

- Improved pad surfaces
- Graded
- Level
- Clean water diversion
- Clean pad
 - Recipe

Compost BMPs: Compost Maturation

- Earthy smell
- Friable
- Temps below 100 F
- O₂ demand, CO₂ & N₂O production minimal (test)
- Alive!

Compost BMPs: Vector Controls

- Immediate incorporation of food sources Cover piles (w/ compost & covers)
- Avoid odors
- Hit temps

Compost BMPs: Housekeeping

- Aesthetics matter! People smell w/ their eyes
- Remove trash
- Organized space
- <u>Size properly</u>

COMMUNITY-SCALE Composting systems

A Comprehensive Practical Guide for Closing the Food System Loop and Solving Our Waste Crisis

James McSweeney

Foreword by Marguerite Manela

"Despite all our achievements we owe our existence to a six-inch layer of topsoil"

Anonymous

Making the argument

rthe soi

Compost Cycle Ecosystem Services

- Return Energy, nutrients, life
- Soil Health Organic matter, structure, soil food web
- Hydrological Cycles Infiltration, retention, drought resistance, runoff & pollution mitigation
- Plant Health root density, disease resistance & antagonism, reduction in agrochemicals
- Goal of <u>soil as sink</u> vs emitter of GHG

55% OF EDIBLE RESTAURANT LEFTOVERS END UP IN HERE. SAVETHEFOOD.COM

Avoidable food waste contributes 2% of total GHG Emissions in US

CLINO

Campbell and Ingram, 2012.

One 5 gallon bucket of food scraps composted = 1 gallon of gasoline C emissions mitigated

(Assumes Community wide and regional collection programs – Source: Highfields Center to Composting)

Soil Organic Matter

Scanning Electron Microscopy: bacteria cell wall (yellow) and contents inside bacteria (red) bonded to mineral particle.

Jessica Chiartas, PhD Candidate, UC Davis, Digging Deeper: How Compost and Cover Crops Can Sequester Soil Carbon

Runaway GHG emissions

• 8.9 Pg C emitted annually

(1 Pg = 1 Petagram = 1 Quadrillion Grams)

• Total emissions since Industrial Revolution

- Conversion to Agriculture: 136±55 Pg C

• Intensification: 78±12 Pg C

• Negative emissions of 150 Pg C required

to prevent 2°C rise in temperature

Jessica Chiartas, PhD Candidate, UC Davis, Digging Deeper: How Compost and Cover Crops Can Sequester Soil Carbon

Carbon Sequestration to the Rescue? California's Healthy Soils Program Incentivizes farmers to build SOM France's 4 per 1000 Initiative Aims to sequester 3.5 Pg C yr⁻¹ Maximum Potential*: 0.9-1.85 Pg C yr⁻¹

*According to scientific literature

Jessica Chiartas, PhD Candidate, UC Davis, Digging Deeper: How Compost and Cover Crops Can Sequester Soil Carbon

Zomer et al., 2017; van Groenigen et al. 2016

Surface vs. Deep Soil Inventories of Carbon Sequestration

Conventional Conventional + WCC Compost + WCC Cropping System 0-30 cm 0-200 cm 0-30 cm 0-200 cm 0-200 cm 0-30 cm tomato 30 cm +1.4 Mg/ha +7.9 Mg/ha 3.8 Aa/ha 60 cm ∆ Surface SOC 100 cm **Misestimated** Underestimated 0.7% change in furrow irrigation total loss direction 200 cm increase -13.4 Mg/ha +21.8 4.8 ∆ Whole Profile SOC

Jessica Chiartas, PhD Candidate, UC Davis, Digging Deeper: How Compost and Cover Crops Can Sequester Soil Carbon

Our soils need compost

Our communities need composting

We have the tools to compost right

Questions?